心肺復(fù)蘇模型

新聞分類(lèi)

騰訊優(yōu)圖開(kāi)源業(yè)界首個(gè)3D醫(yī)療影像大信息預(yù)訓(xùn)練模型

騰訊優(yōu)圖開(kāi)源業(yè)界首個(gè)3D醫(yī)療影像大信息預(yù)訓(xùn)練模型

發(fā)布日期:2022-08-06 作者:康為 點(diǎn)擊:

最近,

不少研發(fā)標(biāo)明,

MedicalNet(https://github.com/Tencent/MedicalNet)是

1、MedicalNet供應(yīng)的預(yù)訓(xùn)練網(wǎng)絡(luò)可遷移到任意3D醫(yī)療影像的AI運(yùn)用中,含蓋但不局限分隔、探測(cè)、分類(lèi)等任務(wù);

2、特別應(yīng)用小信息醫(yī)療影像AI情景,能放慢網(wǎng)絡(luò)

3、通過(guò)簡(jiǎn)潔配置少許插口

4、項(xiàng)目供應(yīng)多卡訓(xùn)練并且測(cè)驗(yàn)評(píng)價(jià)代碼,插口充足,擴(kuò)展性強(qiáng);

5、供應(yīng)不同深度3D ResNet預(yù)訓(xùn)練模型,可供不同信息量級(jí)運(yùn)用應(yīng)用。

為了構(gòu)成3D醫(yī)療影像的預(yù)訓(xùn)練模型,MedicalNet集結(jié)多個(gè)來(lái)自不同3D醫(yī)療行業(yè)的


1.jpg


咱們將MedicalNet模型遷移到預(yù)訓(xùn)練時(shí)未碰觸過(guò)的Visceral和LIDC信息集中,完結(jié)嶄新的肺一些割和肺結(jié)節(jié)分類(lèi)任務(wù),并和現(xiàn)在常用的從零訓(xùn)練(train from scratch)并且Kinetics視頻3D預(yù)訓(xùn)練模型在功能并且


2.jpg


緊隨

專(zhuān)有行業(yè)專(zhuān)有模型,MedicalNet相當(dāng)于為逐個(gè)3D醫(yī)療影像運(yùn)用籌備了具有臨床通用常識(shí)的

MedicalNet是

截至2019年8月,

[1] Chen, Sihong, Kai Ma, and Yefeng Zheng. "Med3D: Transfer Learning for 3D Medical Image Analysis." arXiv preprint arXiv:1904.00625 (2019).

【凡本網(wǎng)注明來(lái)歷非大健康Pai的作品,均轉(zhuǎn)載自其它媒介,目標(biāo)在于傳播更多數(shù)據(jù),并非代表本網(wǎng)同意其觀念和對(duì)其真正性負(fù)責(zé)?!?nbsp;



本文網(wǎng)址:http://m.gmeo.cn/news/1365.html

相關(guān)標(biāo)簽:

最近瀏覽:

相關(guān)產(chǎn)品:

相關(guān)新聞:

在線(xiàn)客服
分享